

#### IEEE - Nashville, TN Technical Meeting - April 30, 2015

## "Communications" Rick Preston, Siemens Energy Automation

Confidential © Siemens Energy, Inc. 2014 All rights reserved.

#### **Overview of Topics**



Communications (Protocols, Media, etc.)
What is IEC61850?
GOOSE Messaging
Simplified Network Topology
Redundancy Options for Communications Networks (eRSTP, PRP, HSR)

#### **Overview of Topics**



Communications (Protocols, Media, etc.)
What is IEC61850?
GOOSE Messaging
Simplified Network Topology
Redundancy Options for Communications Networks (eRSTP, PRP, HSR)

#### **Communications Protocols**



Defines structur for protection ar control

## Modbus®









Based on Ethernet standard



#### **Communication Types – Serial**

#### Serial Communications using Electrical Conductors (Twisted Pair)

## **RS232**





#### Serial Communications using Fiber Optic Cabling





on st

d

#### **Communication Types – Ethernet TCP/IP**

#### Ethernet Communications using Electrical Conductors (RJ45)



#### Ethernet Communications using Fiber Optic Cabling



Based on Ethernet standard

#### **Substation Automation Evolution**



#### Yesterday



Confidential © Siemens Energy, Inc. 2014 All rights reserved.

2

 ¥ ...

#### Nowadays















#### TOMORROW



Figure B.1 – Alternative process bus architectures

A STATE

#### **Example Substation – Mixing Serial and Ethernet Protocols**



#### **Overview of Topics**



Communications (Protocols, Media, etc.)
What is IEC61850?
GOOSE Messaging
Simplified Network Topology
Redundancy Options for Communications Networks (eRSTP, PRP, HSR)

#### What Is IEC 61850?

IEC 61850 is a standard for the design of electrical substation automation



#### **Typical Substation Architecture**



#### **IEC61850 Protocols**

- Three IEC61850 Protocols
  - MMS (Manufacturing Message Specification)
  - GOOSE (Generic Object oriented Substation Event)
  - SV (Sampled Values)



**IEC-61850** Communication Stack

#### **Network Concept –IEC 61850**



#### The IEC 61850 Standard in Brief



Meet the standard



 Standardized language categorized with extensive naming convention based off the electrical system

 Standardized Engineering based on vendor-independent function descriptions

- Use devices from different vendors
- Re-use engineering in the future
- Ethernet-based communications
- Interoperability between different vendors

 Non-hardwired inter-device communication providing protection coordination

#### **IEC61850 Data Structure**



Confidential © Siemens Energy, Inc. 2014 All rights reserved.

#### IEC61850 Data Structure





IEC 61850 defines a data model to enable standardization

#### **Benefits of IEC61850**

- 1. Communications architecture for modeling entire power system.
- 2. Defined data structure that eliminates the need for time consuming mapping.
- 3. Promotion of high inter-operability between systems from different manufacturers devices.
- 4. A common language for describing a power system data model.
- 5. Definition of the complete testing for devices which conforms to the standard.



### **Benefits of IEC61850**

**Conventional Wiring** 





The implementation of IEC 61850 allows for a significant cost reduction in engineering and material costs during substation design, testing, construction and commissioning

IEC 61850 enables up to 70% reduction in wires

#### **Overview of Topics**



Communications (Protocols, Media, etc.)
What is IEC61850?
GOOSE Messaging
Simplified Network Topology
Redundancy Options for Communications Networks (eRSTP, PRP, HSR)

### IEC61850 – GOOSE MECHANISM



- Tmin Minimum Repetition Time of the first message after the signal's change.
- Repetition time interval (Spontaneous repeats t = 2^N\*Tmin (N=0,1,2,3...for tS < Tmax).
- TimeAllowedToLive Idle Time until message's invalidation

- Rapid fire mode
- **GOOSE Status number**
- **GOOSE Sequence number**

### **IEC61850 – GOOSE MECHANISM**



# IEC 61850 Concepts- GOOSE Using the 802.1Q Frame – Layer 2

#### CONCEPTS OF THE IEC 61850 STANDARD

- GOOSE Telegram structure
  - 4 Tag bytes define the tag control information
  - Up to 1500 data bytes are available per message
- GOOSE messages must be prioritized
  - 0-7 (lowest priority)



### IEC 61850 – GOOSE MECHANISM

#### -Fast:

Using layer 2 frames, doesn't require any other layer's confirmation or connection. It is a multicast message without connection or confirmation.

#### -Ensure delivery of message:

Mathematically, by repeating the same message in a short period of time, it will ensure delivery of the message. Besides, the Receptor verify the message quality and check if the Transmitter is there by usage of TimeAllowToLive.

#### -Priority:

By usage of the priority tag (802.1p).

**Confidential © Siemens** 



#### **Enhancements with Edition 2 of IEC61850**

#### Faster Testing and Commissioning Tools for lower Maintenance Cost



Simulation of a GOOSE Message

Command with Test =TRUE



IEC 61850 standard continues to evolve with the publication of edition 2 which simplifies the process of testing and commissioning via a Test and Simulation Modes

Ethernet Enables Interoperability and Save Costs

Α

#### **Overview of Topics**



Communications (Protocols, Media, etc.)
What is IEC61850?
GOOSE Messaging
Simplified Network Topology
Redundancy Options for Communications Networks (eRSTP, PRP, HSR)

#### IEC 61850 communication within a substation



Confidential © Siemens Energy, Inc. 2014 All rights reserved.

#### **Overview of Topics**



Communications (Protocols, Media, etc.)
What is IEC61850?
GOOSE Messaging
Simplified Network Topology
Redundancy Options for Communications
Networks (eRSTP, PRP, HSR)

#### **Principals of redundancy mechanisms**

#### Redundancy with recovery time

- Dual Homing Link Redundancy Two active links, one is sending, sending link changes if one link is down
- RSTP Rapid Spanning Tree Protocol Redundancy IEEE 802.1D-2004

#### Seamless Redundancy Systems:

- Parallel Redundancy Protocol IEC 62439-3.4 Two active links, both sending, parallel configuration
- High availability seamless redundancy IEC 62439-3.5
   Two active links, both sending, ring configuration

#### Principal of Dual Link (Dual homing) Redundancy



- 2 external Switches directly connected
- Devices connected in star structure to switches
- Devices with two Ethernet ports
- Port 1 is sending
- Port 2 is standby
- $\rightarrow$  Established since 2004.

#### **Features of Dual Link Redundancy**

#### PRO

- Easy to handle
- No settings
- Huge field experience

#### CONS

- External switches required due to star structure
- Double number of external switches required
- Only supervision of directly linked connections

### **Principle of RSTP-Configuration**



- 2 external RSTP-Switches
- Devices with integrated RSTP switch

- Rings with up to 30 devices
- Several rings can be connected to external switches
- Setting of RSTP parameters necessary
- → Well established technology ( > 250.000 devices)
- $\rightarrow$  Field proven interoperability

RSTP Switch

#### **Features of RSTP**

#### PRO

- Only one network required
- Redundancy achieved ring structure
- Huge field experience
- Approved IEEE 802.1D-2004 Standard

#### CONS

- Short reconfiguration time in case of interruption (dependent from failure location)
- Settings within RSTP switches necessary

#### **Principle of PRP**



- Two parallel networks
- Device are connected to network PRP-A and PRP-B
- Devices send via both active links
- RedBox for connection of non PRP devices
- Seamless

→ Interoperability tests done



#### Details of redundancy principles Features of PRP

#### PRO

- Seamless reconfiguration No recovery time
- Highest level of redundancy
- Simple mechanism, no special switch settings (as in RSTP)
- "normal" Devices with 1 interface can be connected to one of the PRP-Lan's (SAN = Single attached nodes)
- Approved IEC Standard

#### CONS

- Double number of switches = increased cost
- Switches have to handle Jumbo-Ethernet frames

### **Principle of HSR-Configuration**



- 2 Redboxes
- Devices with integrated HSR switch
- Rings with up to 50 devices
- Redboxes distributed in the ring
- Seamless
- $\rightarrow$  Interoperability tests done



### Features of HSR High Available Seamless Redundancy

### PRO

- Seamless reconfiguration No recovery time
- One common Network
- cost reduction through ring configuration
- Single attached nodes can only be connected to the HSR network via a RedBox
- Approved IEC 62439-3 Standard

CONS

 Standard Ethernet components (e.g. PC) can be connected only via a RedBox

#### **Comparison of redundancy mechanisms**

|                                | RSTP             | PRP      | HSR              |
|--------------------------------|------------------|----------|------------------|
| Network<br>configuration       | ring             | parallel | ring             |
| Max. devices per               | Unlimited        | 512      | 512              |
| layer 2 network                | (max. 30 / ring) |          | (max. 50 / ring) |
| Seamless<br>(no recovery time) | -                | ✓        | ✓                |
| Parameter free                 | -                | ✓        | ✓                |
| Budget-saving<br>network       | •                | -        | ✓                |

Normal operation



Topology constantly monitored by peer to peer bridge PDU's



Interruption with topology change



New topology after interruption



#### Details of redundancy principles PRP normal operation



#### Details of redundancy principles PRP normal operation



## Details of redundancy principles PRP, case of n-1



## Details of redundancy principles PRP, case of n-1



#### HSR – High Available Seamless Redundancy Principle



#### HSR – High Available Seamless Redundancy Principle



#### Details of redundancy principles HSR – High Available Seamless Redundancy Principle



#### Details of redundancy principles HSR – High Available Seamless Redundancy Principle



#### **Details of redundancy principles PRP/HSR** in Parallel and Ring Redundancy



Confidential © Siemens Energy, Inc. 2014 All rights reserved.

#### **Details of redundancy principles PRP/HSR** in Parallel and Ring Redundancy



Confidential © Siemens Energy, Inc. 2014 All rights reserved.

# Details of redundancy principles PRP/HSR in Parallel and Ring Redundancy



Page 55

Confidential © Siemens Energy, Inc. 2014 All rights reserved.

# Details of redundancy principles PRP/HSR in Parallel and Ring Redundancy



Page 56

Confidential © Siemens Energy, Inc. 2014 All rights reserved.

#### **Example Network Architecture** Industrial Power Management Systems

